Computational Methods for Multiple Level Linear Mixed-effects Models

نویسندگان

  • Saikat DebRoy
  • Douglas M. Bates
  • Douglas Bates
چکیده

In an earlier paper we provided easily-calculated expressions for the gradient of the profiled log-likelihood and log-restricted-likelihood for single-level mixed-effects models. We also showed how this gradient is related to the update of an ECME (expectation conditional maximization either) algorithm for such single level models. In this paper we extend those results to mixed-effects models with multiple nested levels of random effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data

The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...

متن کامل

New Approach in Fitting Linear Regression Models with the Aim of Improving Accuracy and Power

The main contribution of this work lies in challenging the common practice of inferential statistics in the realm of simple linear regression for attaining a higher degree of accuracy when multiple observations are available, at least, at one level of the regressor variable. We derive sufficient conditions under which one can improve the accuracy of the interval estimations at quite affordable ...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Stochastic Restricted Two-Parameter Estimator in Linear Mixed Measurement Error Models

In this study, the stochastic restricted and unrestricted two-parameter estimators of fixed and random effects are investigated in the linear mixed measurement error models. For this purpose, the asymptotic properties and then the comparisons under the criterion of mean squared error matrix (MSEM) are derived. Furthermore, the proposed methods are used for estimating the biasing parameters. Fin...

متن کامل

Computational Methods for Single Level Linear Mixed-effects Models

Linear mixed-effects models are an important class of statistical models that are used directly in many fields of applications and are also used as iterative steps in fitting other types of mixed-effects models, such as generalized linear mixed models. The parameters in these models are typically estimated by maximum likelihood (ML) or restricted maximum likelihood (REML). In general there is n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003